Communications of the ACM,
Vol. 15 No. 12, Pages 1023-1032
10.1145/361598.361606
The classical process of partitioning an array into subarrays is extended to a more useful array language operation. Various modes of partitioning are defined for different types of arrays, so that subarrays may vary over the original array in a nearly arbitrary manner. These definitions are motivated with several realistic examples to illustrate the value of partitioning for array languages.Of general interest is the data structure for partitioning. This consists of dynamic tree structures which are used to derive and maintain the array control information. These are described in sufficient detail to be of value in the design of other array languages. The description presented in this paper is implemented in a new array language, OL/2, currently under development at the University of Illinois.
The full text of this article is premium content
0 Comments
No entries found
Log in to Read the Full Article
Purchase the Article
Log in
Create a Web Account
If you are an ACM member, Communications subscriber, Digital Library subscriber, or use your institution's subscription, please set up a web account to access premium content and site
features. If you are a SIG member or member of the general public, you may set up a web account to comment on free articles and sign up for email alerts.