An algorithm is described for reducing the generalized eigenvalue problem Ax = &lgr;Bx to an ordinary problem, in case A and B are symmetric band matrices with B positive definite. If n is the order of the matrix and m the bandwidth, the matrices A and B are partitioned into m-by-m blocks; and the algorithm is described in terms of these blocks. The algorithm reduces the generalized problem to an ordinary eigenvalue problem for a symmetric band matrix C whose bandwidth is the same as A and B. The algorithm is similar to those of Rutishauser and Schwartz for the reduction of symmetric matrices to band form. The calculation of C requires order n2m operation. The round-off error in the calculation of C is of the same order as the sum of the errors at each of the n/m steps of the algorithm, the latter errors being largely determined by the condition of B with respect to inversion.
The full text of this article is premium content
0 Comments
No entries found
Log in to Read the Full Article
Purchase the Article
Log in
Create a Web Account
If you are an ACM member, Communications subscriber, Digital Library subscriber, or use your institution's subscription, please set up a web account to access premium content and site
features. If you are a SIG member or member of the general public, you may set up a web account to comment on free articles and sign up for email alerts.