To accurately render a two-dimensional image of a three-dimensional scene, global illumination information that affects the intensity of each pixel of the image must be known at the time the intensity is calculated. In a simplified form, this information is stored in a tree of “rays” extending from the viewer to the first surface encountered and from there to other surfaces and to the light sources. A visible surface algorithm creates this tree for each pixel of the display and passes it to the shader. The shader then traverses the tree to determine the intensity of the light received by the viewer. Consideration of all of these factors allows the shader to accurately simulate true reflection, shadows, and refraction, as well as the effects simulated by conventional shaders. Anti-aliasing is included as an integral part of the visibility calculations. Surfaces displayed include curved as well as polygonal surfaces.
The full text of this article is premium content
0 Comments
No entries found
Log in to Read the Full Article
Purchase the Article
Log in
Create a Web Account
If you are an ACM member, Communications subscriber, Digital Library subscriber, or use your institution's subscription, please set up a web account to access premium content and site
features. If you are a SIG member or member of the general public, you may set up a web account to comment on free articles and sign up for email alerts.