An empirical study of insertion and deletion in binary search trees
By Jeffrey L. Eppinger
Communications of the ACM,
Vol. 26 No. 9, Pages 663-669
10.1145/358172.358183
This paper describes an experiment on the effect of insertions and deletions on the path length of unbalanced binary search trees. Repeatedly inserting and deleting nodes in a random binary tree yields a tree that is no longer random. The expected internal path length differs when different deletion algorithms are used. Previous empirical studies indicated that expected internal path length tends to decrease after repeated insertions and asymmetric deletions. This study shows that performing a larger number of insertions and asymmetric deletions actually increases the expected internal path length, and that for sufficiently large trees, the expected internal path length becomes worse than that of a random tree. With a symmetric deletion algorithm, however, the experiments indicate that performing a large number of insertions and deletions decreases the expected internal path length, and that the expected internal path length remains better than that of a random tree.
The full text of this article is premium content
0 Comments
No entries found
Log in to Read the Full Article
Purchase the Article
Log in
Create a Web Account
If you are an ACM member, Communications subscriber, Digital Library subscriber, or use your institution's subscription, please set up a web account to access premium content and site
features. If you are a SIG member or member of the general public, you may set up a web account to comment on free articles and sign up for email alerts.