Home → Magazine Archive → January 2016 (Vol. 59, No. 1) → Better Memory → Abstract

Better Memory

By Samuel Greengard

Communications of the ACM, Vol. 59 No. 1, Pages 23-25

[article image]

Since the dawn of computing, an ongoing challenge has been to build devices that balance the need for speed and persistent storage. While dynamic random-access memory (DRAM) is fast, it can only hold data as long as it receives an electrical current; when the computing device is switched off, the data disappears. And although storage devices such as hard drives are efficient for holding large volumes of data, they are relatively slow. The result? "A performance or persistence choice that doesn't give you the best of both worlds," states David Andersen, an associate professor in the computer science department at Carnegie Mellon University.

Over the last few years, engineers have resolved some of these challenges through solid state drives (SSDs) that contain no disk or other moving parts, yet continue to store data when the devices are switched off. What is more, SSDs use less power and provide higher reliability than hard disk drives. However, they are far from ideal. For one thing, they're still relatively expensive. For another, while SSD is often an improvement over older technologies and sometimes reduces the need for DRAM, it still does not provide the level of speed, flexibility, and lifespan that users desire.


No entries found