Supervised machine-learning models boast remarkable predictive capabilities. But can you trust your model? Will it work in deployment? What else can it tell you about the world? Models should be not only good, but also interpretable, yet the task of interpretation appears underspecified. The academic literature has provided diverse and sometimes non-overlapping motivations for interpretability and has offered myriad techniques for rendering interpretable models. Despite this ambiguity, many authors proclaim their models to be interpretable axiomatically, absent further argument. Problematically, it is not clear what common properties unite these techniques.
This article seeks to refine the discourse on interpretability. First it examines the objectives of previous papers addressing interpretability, finding them to be diverse and occasionally discordant. Then, it explores model properties and techniques thought to confer interpretability, identifying transparency to humans and post hoc explanations as competing concepts. Throughout, the feasibility and desirability of different notions of interpretability are discussed. The article questions the oft-made assertions that linear models are interpretable and that deep neural networks are not.