Home → Magazine Archive → October 2022 (Vol. 65, No. 10) → Traffic Classification in an Increasingly Encrypted... → Abstract

Traffic Classification in an Increasingly Encrypted Web

By Iman Akbari, Mohammad A. Salahuddin, Leni Ven, Noura Limam, Raouf Boutaba, Bertrand Mathieu, Stephanie Moteau, Stephane Tuffin

Communications of the ACM, Vol. 65 No. 10, Pages 75-83

[article image]

Traffic classification is essential in network management for a wide range of operations. Recently, it has become increasingly challenging with the widespread adoption of encryption in the Internet, for example, as a de facto in HTTP/2 and QUIC protocols. In the current state of encrypted traffic classification using deep learning (DL), we identify fundamental issues in the way it is typically approached. For instance, although complex DL models with millions of parameters are being used, these models implement a relatively simple logic based on certain header fields of the TLS handshake, limiting model robustness to future versions of encrypted protocols. Furthermore, encrypted traffic is often treated as any other raw input for DL, while crucial domain-specific considerations are commonly ignored. In this paper, we design a novel feature engineering approach used for encrypted Web protocols, and develop a neural network architecture based on stacked long short-term memory layers and convolutional neural networks. We evaluate our approach on a real-world Web traffic dataset from a major Internet service provider and mobile network operator. We achieve an accuracy of 95% in service classification with less raw traffic and a smaller number of parameters, outperforming a state-of-the-art method by nearly 50% fewer false classifications. We show that our DL model generalizes for different classification objectives and encrypted Web protocols. We also evaluate our approach on a public QUIC dataset with finer application-level granularity in labeling, achieving an overall accuracy of 99%.

Back to Top

1. Introduction

Traffic classification is quintessential for network operators to perform a wide range of network operation and management activities. This includes capacity planning, security and intrusion detection, quality of service (QoS) assurance, performance monitoring, volumetry, and resource provisioning, to name a few. For example, an enterprise network administrator or Internet service provider (ISP) may want to prioritize traffic for business critical services, identify unknown traffic for anomaly detection, or perform workload characterization for designing efficient resource management schemes to satisfy performance and resource requirements of diverse applications. Depending on the context, misclassification on a large scale may result in failure to deliver QoS guarantees, high operational expenses, security breaches, or even disruption in services.

Encrypted communication between clients and servers has now become the norm. Most prominent Web-based services are now running over hypertext transfer protocol secure (HTTPS). On the other hand, to improve security and quality of experience (QoE) for end users, new Web protocols (e.g., HTTP/2 and QUIC) have emerged, which overcome various limitations of HTTP/1.1. Using a real-world mobile traffic, we estimate that around 32% of all HTTPS sessions already use HTTP/2 as their underlying protocol. However, HTTP/2 features, such as payload encryption, multiplexing and concurrency, resource prioritization, and server push, add to the complexity of traffic classification. While a large body of literature harnesses the power of machine learning (ML) for different traffic classification objectives (e.g., service- and application-level, QoE prediction, security), there exist various limitations that must be addressed for its practical usage.


No entries found