Home → News → How MIT's Liquid Neural Networks Can Solve AI Problems... → Full Text

How MIT's Liquid Neural Networks Can Solve AI Problems from Robotics to Self-Driving Cars

By VentureBeat

August 3, 2023

[article image]

In the current artificial intelligence (AI) landscape, the buzz around large language models (LLMs) has led to a race toward creating increasingly larger neural networks. However, not every application can support the computational and memory demands of very large deep learning models. 

The constraints of these environments have led to some interesting research directions. Liquid neural networks, a novel type of deep learning architecture developed by researchers at the Computer Science and Artificial Intelligence Laboratory at MIT (CSAIL), offer a compact, adaptable and efficient solution to certain AI problems. These networks are designed to address some of the inherent challenges of traditional deep learning models.

Liquid neural networks can spur new innovations in AI and are particularly exciting in areas where traditional deep learning models struggle, such as robotics and self-driving cars.

From VentureBeat
View Full Article


No entries found